IEEE INFOCON IEEE International Conference on Computer Communications 6-9 July 2020 // Virtual Conference

Automating Cloud Deployment for Deep Learning Inference of Real-time Online Services

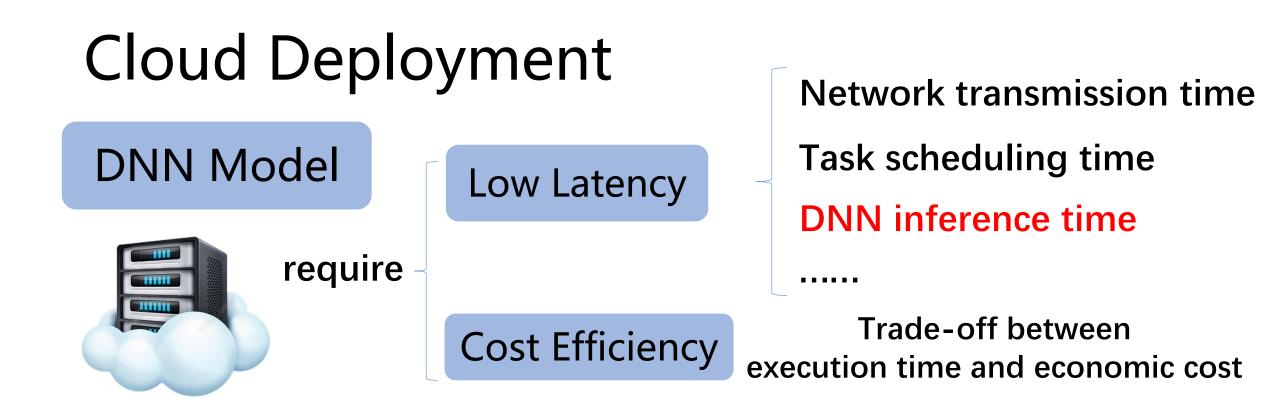
Yang Li Zhenhua Han Quanlu Zhang Zhenhua Li Haisheng Tan

DNN-driven Real-time Services

Image Classification

Speech Recognition

Neural Machine Translation



Cloud Deplo	Network transmission time	
DNN Model	Low Latency	Task scheduling time
require -		DNN inference time
	Cost Efficiency	Y Trade-off between execution time and economic cost

Model	Min Inference Cost	Max Inference Cost	-
RNNLM	\$0.17	\$1.15	Inference cost (10000 times
Inception-V3	\$0.40	\$6.39	of different models across
VGG16	\$0.58	\$7.26	different cloud configuration
ResNet-50	\$0.60	\$4.74	amerent cloud configuration
AlexNet	\$0.59	\$4.45	

Here come the problems want to deploy my face recognition service on the cloud. Given a configuration, how can I minimize the DNN inference time? How should I choose the cloud configuration?

Choose Cloud Configurations

Choose cloud configurations

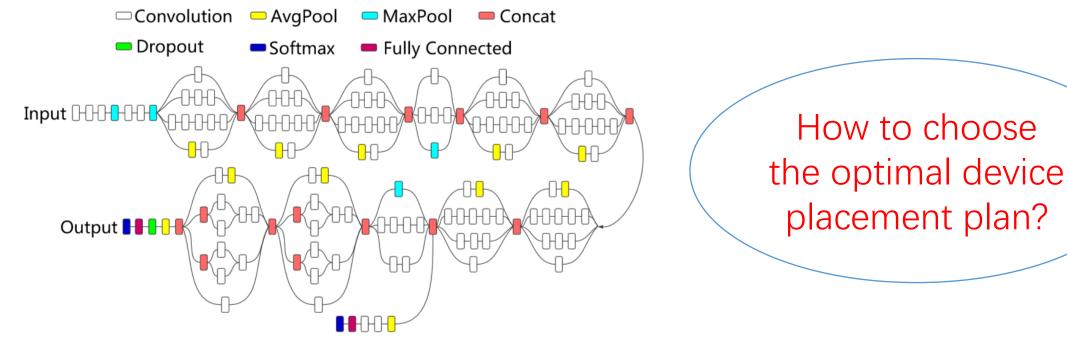
Both of them provide over 100 types of cloud configurations!

Example: 2 series from over 40 series on Azure!

Instance	Core	RAM	Temporary storage	GPU	Instance	Core	RAM	Temporary storage	GPU
NC6 Promo	6	56 GiB	340 GiB	1x K80	NC6s v2	6	112 GiB	736 GiB	1X P100
NC12 Promo	12	112 GiB	680 GiB	2x K80	NC12s v2	12	224 GiB	1,474 GiB	2X P100
NC24 Promo	24	224 GiB	1,440 GiB	4X K80	NC24rs v2	24	448 GiB	2,948 GiB	4X P100
NC24r Promo	24	224 GiB	1,440 GiB	4X K80	NC24s v2	24	448 GiB	2,948 GiB	4X P100

Reduce DNN Inference Time

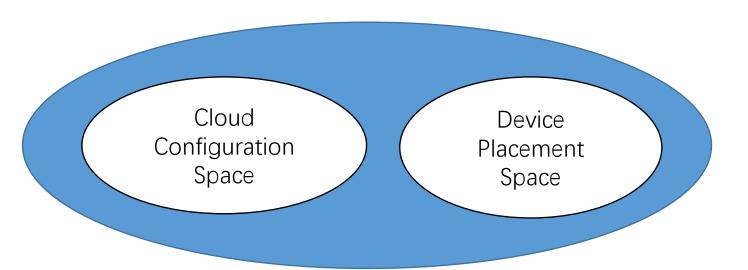
- A DNN model can have hundreds to thousands of operations.
- Each operation can be placed on a list of feasible devices
 - (e.g., CPUs or GPUs) to reduce execution time.



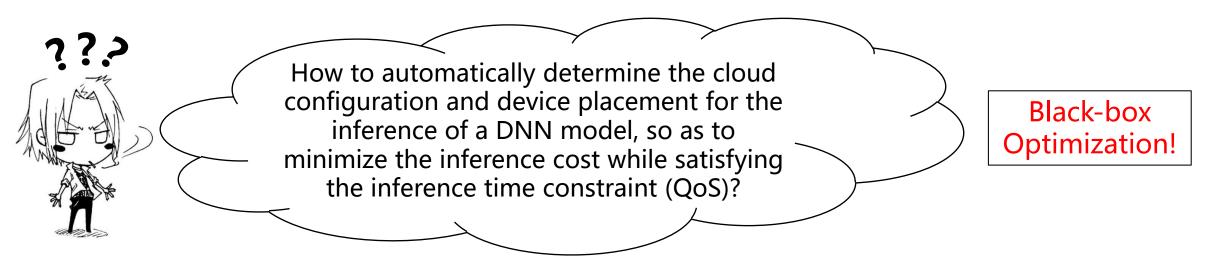
Example: the computation graph of Inception-V3

Challenge

• Huge search space



- Inference cost
 - the price of the cloud configuration * inference time. (\$/hour) (second/request)



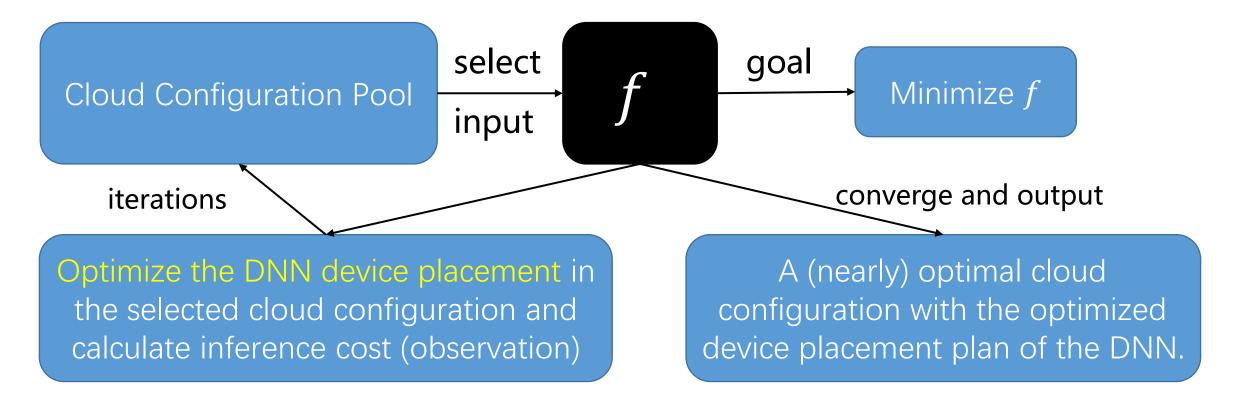
AutoDeep

• Given

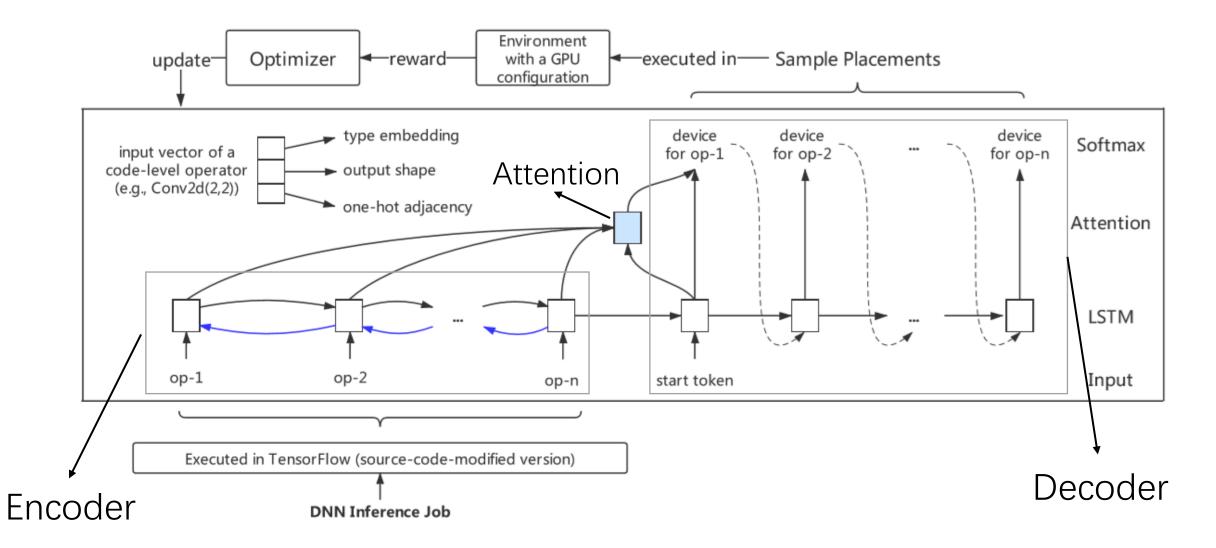
- A DNN model
- Inference time constraint (QoS constraint)
- Goal
 - Compute the cloud deployment with the lowest inference cost
- Two-fold joint optimization
 - Cloud configuration searching
 - Black-box method: Bayesian Optimization (BO)
 - Device placement optimization
 - Markov decision process: Deep Reinforcement Learning (DRL)

Black-box Optimization

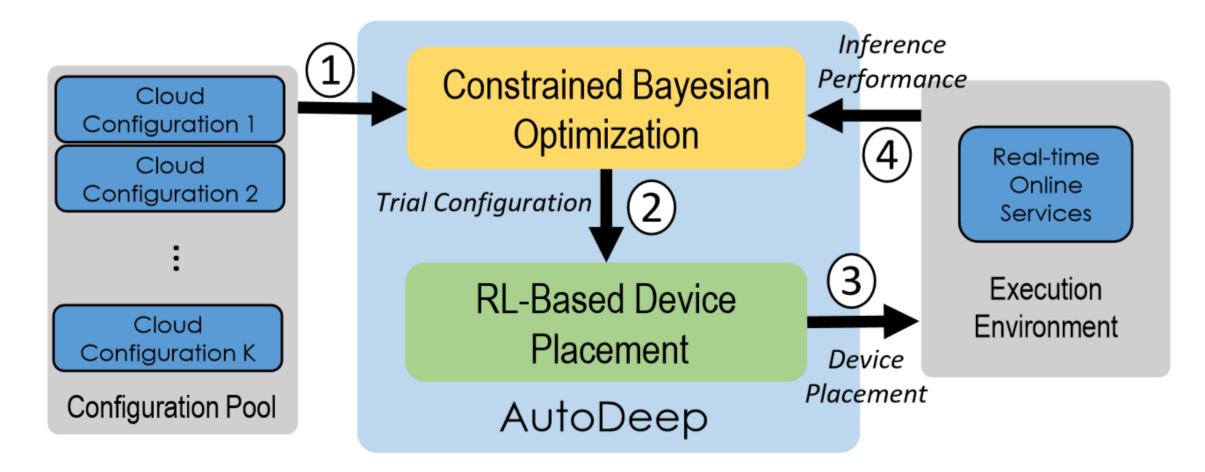
• Regard the inference cost of a given DNN model with a QoS constraint as a black-box function *f*.



Optimize Device Placement – DRL Model



AutoDeep: Architectural Overview

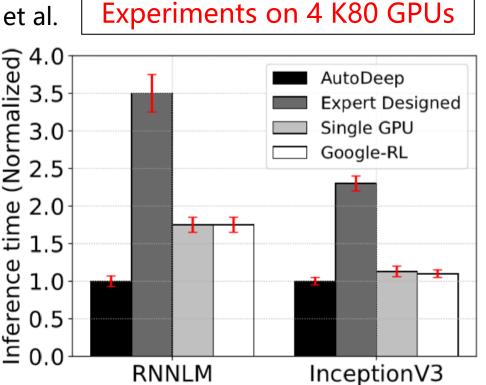


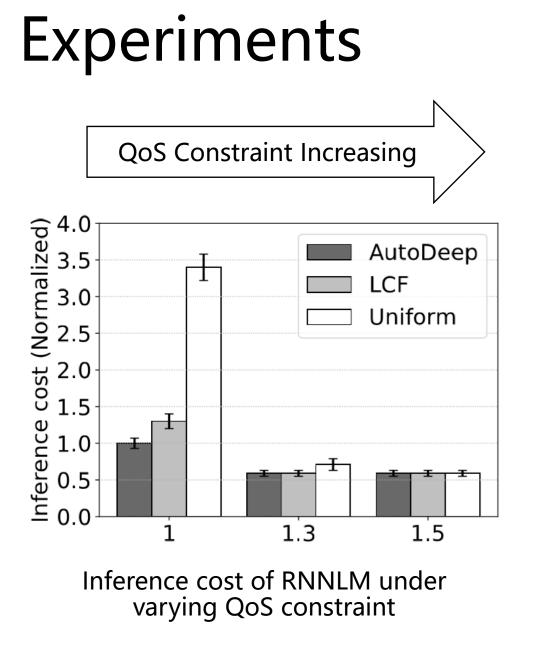
Experiments – Device Placement

- Google RL •
 - Algorithm designed by Mirhoseini et al. •
 - [ICML17] Device placement optimization with reinforcement learning
- Expert Designed
 - Hand-crafted placements given by Mirhoseini et al. •
 - Inference time (Normalized) 0 0 1 1 2 2 2 2 2 0 0 2 0 2 0 2 0 2 0 AutoDeep 3.5 **Expert Designed** Single GPU 3.0 Google-RL 2.0 1.5 1.0

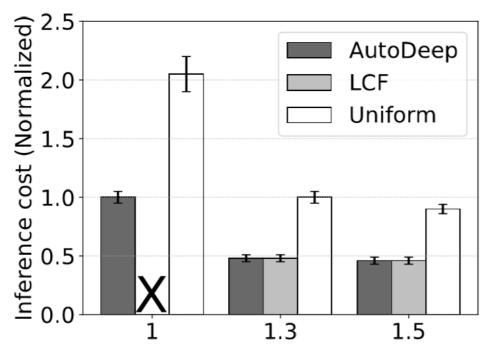
• Execution on a single GPU.

CPU	GPU	GPU Number	Price (USD/hour/GPU)
Core i7-5930K	GTX 980Ti	1-3	0.56
Core i7-6850K	GTX 1080	1-4	0.70
Xeon E5-2690 v4	P100	1-4	2.07
Xeon E5-2690 v3	K80	1-4	0.90

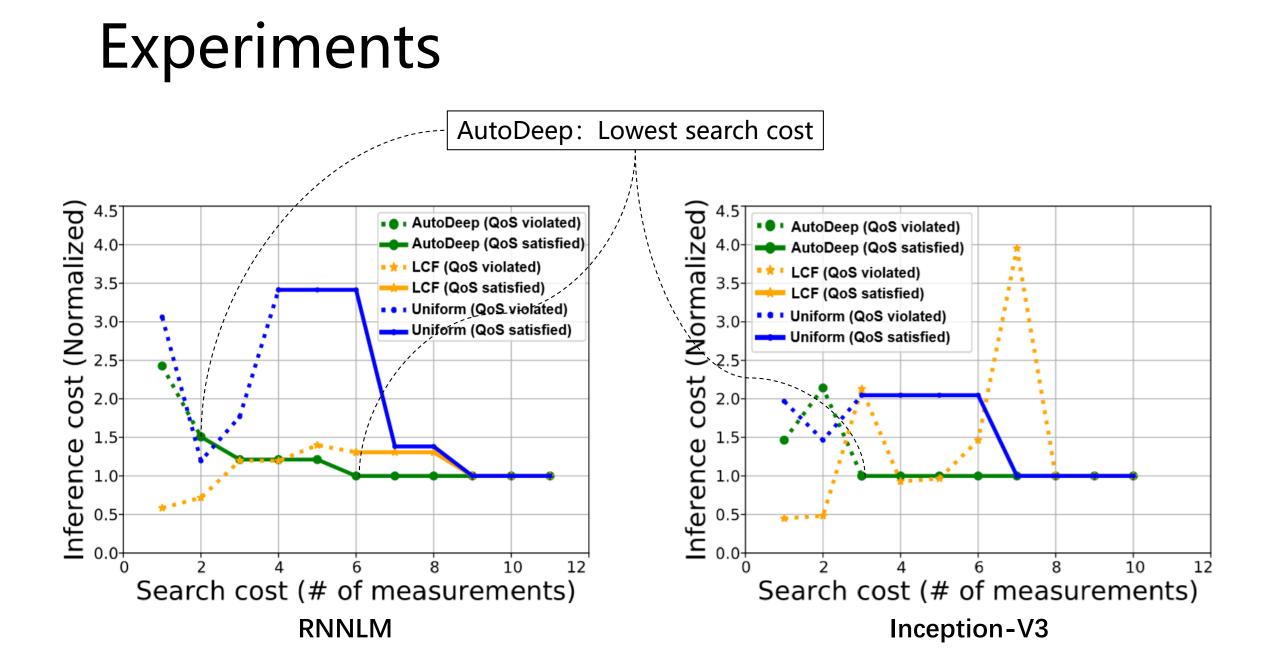




- LCF (Lowest Cost First)
 - Try configurations in the ascending order of their unit price
- Uniform
 - Try configurations with uniform probability



Inference cost of Inception-V3 under varying QoS constraint



Future work

My Email: liyang14thu@gmail.com

Improve learning efficiency

- Developing a general network architecture so that re-training is not needed for new DNN inference models
- Accelerate DRL training process

```
•
```


- Optimize the system efficiency
 - Over 90% of searching time is wasted to initialize the DNN computation graph
 - Allowing placing operations in a fine-grained manner (i.e., without restarting a job)